:wq

Get me out of here! 🚀

Consider a crystal in which unit cells are labeled by \(\boldsymbol{l}\), and atoms in each cell are labeled by \(\boldsymbol{b}\). The total energy of the system, noted by \(\mathcal{V}\), can be expanded using Taylor's expansion (greek letters mean direction): \[ \begin{aligned} \mathcal{V} = & \mathcal{V}_0 + \underbrace{\sum_{\boldsymbol{l},\boldsymbol{b}}\sum_{\alpha} \Phi_{\alpha}(\boldsymbol{l}\boldsymbol{b}) u_{\alpha}(\boldsymbol{l}\boldsymbol{b})}_{\mathcal{V}_1} + \underbrace{\frac{1}{2}\sum_{\boldsymbol{l},\boldsymbol{b},\boldsymbol{l}',\boldsymbol{b}'}\sum_{\alpha,\beta} \Phi_{\alpha,\beta}(\boldsymbol{l}\boldsymbol{b};\boldsymbol{l}'\boldsymbol{b}')u_{\alpha}(\boldsymbol{l}\boldsymbol{b})u_{\beta}(\boldsymbol{l}'\boldsymbol{b}')}_{\mathcal{V}_2} + \cdots\\ & \quad + \frac{1}{n!}\sum_{\boldsymbol{l}_1,\boldsymbol{b}_1,\boldsymbol{l}_2,\boldsymbol{b}_2,\cdots,\boldsymbol{l}_n,\boldsymbol{b}_n}\sum_{\alpha_1,\alpha_2,\cdots,\alpha_n}\Phi_{\alpha_1,\alpha_2,\cdots,\alpha_n}(\boldsymbol{l}_1,\boldsymbol{b}_1;\boldsymbol{l}_2,\boldsymbol{b}_2;\cdots;\boldsymbol{l}_n,\boldsymbol{b}_n)u_{\alpha_1}(\boldsymbol{l}_1,\boldsymbol{b}_1)\cdots u_{\alpha_n}(\boldsymbol{l}_n \boldsymbol{b}_n) \end{aligned} \] Where we note the nth order interatomic force constants (IFCs) using \(\Phi\), and we note \(u_{\alpha}(\boldsymbol{l}\boldsymbol{b})\) represent the spatial deviation of atom \(\boldsymbol{b}\) in cell \(\boldsymbol{l}\) along \(\alpha\) direction.

Read more »
0%