Solve phonon dispersion relation by the classical approach
Consider a crystal in which unit cells are labeled by \(\boldsymbol{l}\), and atoms in each cell are labeled by \(\boldsymbol{b}\). The total energy of the system, noted by \(\mathcal{V}\), can be expanded using Taylor's expansion (greek letters mean direction): \[ \begin{aligned} \mathcal{V} = & \mathcal{V}_0 + \underbrace{\sum_{\boldsymbol{l},\boldsymbol{b}}\sum_{\alpha} \Phi_{\alpha}(\boldsymbol{l}\boldsymbol{b}) u_{\alpha}(\boldsymbol{l}\boldsymbol{b})}_{\mathcal{V}_1} + \underbrace{\frac{1}{2}\sum_{\boldsymbol{l},\boldsymbol{b},\boldsymbol{l}',\boldsymbol{b}'}\sum_{\alpha,\beta} \Phi_{\alpha,\beta}(\boldsymbol{l}\boldsymbol{b};\boldsymbol{l}'\boldsymbol{b}')u_{\alpha}(\boldsymbol{l}\boldsymbol{b})u_{\beta}(\boldsymbol{l}'\boldsymbol{b}')}_{\mathcal{V}_2} + \cdots\\ & \quad + \frac{1}{n!}\sum_{\boldsymbol{l}_1,\boldsymbol{b}_1,\boldsymbol{l}_2,\boldsymbol{b}_2,\cdots,\boldsymbol{l}_n,\boldsymbol{b}_n}\sum_{\alpha_1,\alpha_2,\cdots,\alpha_n}\Phi_{\alpha_1,\alpha_2,\cdots,\alpha_n}(\boldsymbol{l}_1,\boldsymbol{b}_1;\boldsymbol{l}_2,\boldsymbol{b}_2;\cdots;\boldsymbol{l}_n,\boldsymbol{b}_n)u_{\alpha_1}(\boldsymbol{l}_1,\boldsymbol{b}_1)\cdots u_{\alpha_n}(\boldsymbol{l}_n \boldsymbol{b}_n) \end{aligned} \] Where we note the nth order interatomic force constants (IFCs) using \(\Phi\), and we note \(u_{\alpha}(\boldsymbol{l}\boldsymbol{b})\) represent the spatial deviation of atom \(\boldsymbol{b}\) in cell \(\boldsymbol{l}\) along \(\alpha\) direction.
Hello World
Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.